Author Affiliations
Abstract
1 Xiamen University, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen, China
2 Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
3 Huawei Technologies Co., Ltd., Shenzhen, China
4 Xiamen University, Shenzhen Research Institute, Shenzhen, China
Green semiconductor lasers are still undeveloped, so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers, precluding compact and low-cost green laser systems. Here, we report the first Watt-level all-fiber CW Pr3 + -doped laser operating directly in the green spectral region, addressing the aforementioned difficulties. The compact all-fiber laser consists of a double-clad Pr3 + -doped fluoride fiber, two homemade fiber dichroic mirrors at visible wavelengths, and a 443-nm fiber-pigtailed pump source. Benefitting from > 10 MW / cm2 high damage intensity of our designed fiber dielectric mirror, the green laser can stably deliver 3.62-W of continuous-wave power at ∼ 521 nm with a slope efficiency of 20.9%. To the best of our knowledge, this is the largest output power directly from green fiber lasers, which is one order higher than previously reported. Moreover, these green all-fiber laser designs are optimized by using experiments and numerical simulations. Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length, output mirror reflectivity, and doping level should be considered to obtain higher power and efficiency. This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine, laser display, underwater detection, and spectroscopy.
fiber laser high power Pr3+-doped fiber green light 
Advanced Photonics
2022, 4(5): 056001
彭秀林 1,2杨昌盛 2,3,*邓华秋 1,2谭天奕 2,3[ ... ]徐善辉 1,2,3,4
作者单位
摘要
1 华南理工大学物理与光电学院, 广东 广州 510640
2 华南理工大学发光材料与器件国家重点实验室, 广东 广州 510640
3 广东省特种光纤材料与器件工程技术研究开发中心, 广东 广州 510640
4 广东省光纤激光材料与应用技术重点实验室, 广东 广州 510640
蓝绿光波段激光在激光显示、医疗诊断、光学数据存储以及水下通信等方面有着广阔的应用前景。尤其是蓝绿光单频激光具有较高的相干性,可广泛应用于高分辨率光谱、原子冷却和俘获、量子光学等领域,吸引了国内外学者的极大关注,发展十分迅速。本文介绍了实现蓝绿光单频激光的几种关键技术——二次谐波产生(SHG)手段获得蓝绿光单频激光、半导体材料直接激射产生蓝绿光单频激光等,总结了蓝绿光单频激光器的研究现状和发展方向。此外,结合本课题组在光纤基蓝绿光单频激光器方面的研究工作,着重介绍了基于近红外短波单频光纤激光器通过SHG手段获得蓝绿光单频激光的研究进展,并对蓝绿光单频激光技术的发展进行了展望。
激光光学 蓝绿光 单频 光纤激光 二次谐波产生 
激光与光电子学进展
2020, 57(7): 071606
Author Affiliations
Abstract
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
3 Guangdong Engineering Technology Research and Development Center of High-performance Fiber Laser Techniques and Equipment, Zhuhai 519031, China
4 Hengqin Firay Sci-Tech Company Ltd., Zhuhai 519031, China
5 Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou 510640, China
6 Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
7 e-mail: pengfeima_scut@163.com
In this paper, a technique combining cascaded energy-transfer pumping (CEP) method and master-oscillator power-amplifier (MOPA) configuration is proposed for power scaling of 1.6-μm-band single-frequency fiber lasers (SFFLs), where the Er3+ ion has a limited gain. The CEP technique is fulfilled by coupling a primary signal light at 1.6 μm and a C-band auxiliary laser. The numerical model of the fiber amplifier with the CEP technique reveals that the energy transfer process involves the pump competition and the in-band particle transition between the signal and auxiliary lights. Moreover, for the signal emission, the population density in the upper level is enhanced, and the effective population inversion is achieved thanks to the CEP. A single-frequency MOPA laser at 1603 nm with an output power of 52.6 W and an improved slope efficiency of 30.4% is experimentally obtained through the CEP technique. Besides, a laser linewidth of 5.2 kHz and a signal-to-auxiliary laser ratio of 60.7 dB are obtained at the maximum output power. The proposed technique is anticipated to be promising for increasing the slope efficiency and power scaling for fiber lasers operating at L band.
Photonics Research
2020, 8(3): 03000414

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!